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ABSTRACT
We introduce an effective technique that exploits logical chan-
nels for malicious co-location and target identification on
Microsoft Azure cloud instances. Specifically, we employ
two co-location scenarios: targeted co-location with a spe-
cific victim or co-location with subsequent identification of
victims of interest. We develop a novel, noise-resistant co-
location detection method through the network channel that
provides fast, reliable results with no cooperation from the
victim. Also, our method does not require access to the
victim instance neither as a legitimate user nor a malicious
attacker.

The efficacy of the proposed technique enables practical
QoS degradation attacks which are easy and cheap to im-
plement yet hard to discover. The slightest performance
degradation in web interfaces or time critical applications
can result in significant financial losses. To this end, we show
that once co-located, a malicious instance can use memory
bus locking to render the victim server unusable to the cus-
tomers. This work underlines the need for cloud service
providers to apply stronger isolation techniques.

Keywords
Microsoft Azure, Logical Channels, Denial-of-Service, Co-
location in Cloud, Memory Bus locking.

1. INTRODUCTION
Cloud service providers provide on-demand scaling and

promise cost savings as a result of shared resources. In
most clouds, tenants share physical hardware, i.e. services
of many users run on the same underlying physical ma-
chine. In order to ensure security, Cloud Service Providers
(CSPs) promise strong isolation between the instances: each
instance runs in its own virtual machine (VM), managed by
a CSP-controlled hypervisor. The hypervisor ensures logical
isolation as well as fair distribution and access to system re-
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sources. With increasing adoption of the cloud, researchers
have started to question the strong isolation claims of widely
used hypervisors, and indeed a number of weaknesses have
been found. For instance, hardware side-channels are known
for enabling cross-VM information extraction, including cryp-
tographic keys [27, 13, 25] and other sensitive user informa-
tion [28, 17]. All of these attacks require co-location as a
necessary first step: The adversary can only extract sensi-
tive information if it manages to place instances on the same
physical machine as the victim. CSPs have tried to make
co-location difficult by employing undisclosed and unpre-
dictable placement algorithms. However, in the early days
of cloud adoption, Ristenpart et al. showed that logical side-
channels, i.e. information of the internal network topology of
the Amazon cloud, was sufficient to deduce co-location [18].

It is widely believed that CSPs have since made co-location
detection difficult by closing logical channels. Co-location
detection is still feasible by using hardware side-channels,
i.e. the memory bus channel [10, 21, 24] or the cache side-
channel [11]. However, these side-channel based co-location
tests are much harder to exploit: they take more time to
run and use noisy channels, resulting in false positives and
negatives, and do not scale as well as logical side-channels.

Either way, once co-location is achieved, an attacker can
perform a wide range of attacks. While the previously men-
tioned information extraction attacks present a significant
threat, they are applicable only to security-critical services,
and—due to recent updates in major cryptographic libraries—
mainly affect outdated implementations. An alternative way
of attacking cloud instances is by degrading their perfor-
mance in terms of latency and responsiveness and thus their
Quality of Service (QoS). Such QoS attacks can affect any
cloud service, regardless of whether it has a security compo-
nent. QoS attacks are easier to perform and are very diffi-
cult to prevent from the client-side—while crypto-attacks
are mitigated by simply updating crypto libraries to the
patched versions.

On e-commerce sites like Amazon, eBay or Macy’s, even
the slightest delay in the user interface leads to a serious loss
of customers and revenue. According to [9], Amazon loses
1% of sales for every 100 ms latency. In addition, a number
of application domains, e.g. finance and streaming media,
on-line gaming are extremely sensitive to latency. In high
frequency stock trading, for instance, milliseconds of head
start can translate into great financial gains [6]. In short,
the responsiveness of a web page or an application server is
crucial for the quality of the service provided.
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1.1 Our Contribution
This work presents a novel and highly efficient co-location

detection method on Microsoft Azure compute cloud. Note
that Azure is the fastest growing CSP, and only second
to AWS in current business size, with a 16% IaaS market
share [20]. By utilizing a combination of logical channels,
we present an extremely fast, cheap and reliable detection
method. The new method does not need any collaboration
between co-located instances and is able to identify known
targets in only seconds. More importantly, our method also
allows the attacker to identify whom he is co-located with.
That is, rather than launching instances until the attacker
happens to succeed in co-locating with a specific target1, he
can first launch instances, check with whom the instances
are co-located with, and then decide on potential actions
and victims. Identifying unknown targets takes only min-
utes and has a 100% success rate.

We further show the efficacy of QoS attacks of a co-located
victim. QoS attacks are enabled due to the lack of isolation
in the memory channel. Locking the memory bus signifi-
cantly degrades bandwidth and increases latency of many
applications, especially in memory-intensive web applica-
tions. In summary, this work:

• Fast Co-location: Presents the fastest and cheapest
co-location detection mechanism that has been imple-
mented in Microsoft Azure utilizing the combination
of pure logical network channels.

• Stealthy and Precise: The presented co-location de-
tection mechanism does not suffer from false positives
and is very difficult to detect.

• Target Identification: Utilizes the obtained neigh-
bor network parameter information to develop a method-
ology that determines the identity of the co-located
neighbors.

• QoS Attack: Demonstrates that non-virtualized ac-
cess to the memory bus enables QoS attacks which,
unlike information extraction, can impact virtually all
services on a cloud server, are easy to perform, and yet
can have strong impact.

While our co-location results are obtained only on Mi-
crosoft Azure, we believe that it is highly likely that other
CSPs suffer from the same or similar placement vulnerabil-
ities. As for the described QoS attack, it works across all
CSPs not monitoring or blocking memory bus locking in-
structions. So far we are not aware of any CSPs planning to
take this step, since blocking atomic instructions will make
concurrency and cache coherency impossible.

The rest of the paper is organized as follows: Section 2
describes the background knowledge, Section 3 explains the
approach to map the Microsoft Azure network and Sec-
tion 4 describes the co-location attack scenarios. Perfor-
mance degradation results are shown in Section 5 while coun-
termeasures and conclusion are presented in Sections 6 and
8 respectively.

1Co-location may not even be possible if there are no open
slots on the target machine for an additional VM.

2. BACKGROUND

2.1 IaaS Public Clouds
IaaS public clouds are a service in which a third party

provider owns hardware and software resources that are pro-
vided to end users in the form of virtualized hardware. In
contrast to PaaS and SaaS clouds where the user is provided
with the software and a software development platform re-
spectively, IaaS clouds deliver operating system, servers,
network and storage on-demand in the form of a Virtual
Machine (VM) instance. In fact, many PaaS and SaaS ser-
vices run behind an IaaS instance. The host providing the
physical resources is in charge of the physical machine main-
tenance and backup while the user manages only his own
service.

In order to maximize profit and reduce cost, IaaS cloud
providers host several instances that belong to different cus-
tomers on the same physical server. While this approach
minimizes costs, it can also lead to security breaches if the
isolation between instances is not perfect. To make tar-
geted attacks harder to perform, CSPs make it difficult for
tenants to know which instances they are co-located with.
This placement is usually managed by placement algorithms
and use several launch parameters such as the time of the
day, the region in which the instance will be opened and the
instance type. As an example, instances that are created
within a short time period are more likely to be placed in
the same physical server, due to a phenomenon called par-
allel placement locality.

After the instance launch, CSP assign two IP addresses to
each instance, i.e. a public and a private IP address. While
the public IP address is utilized to establish communica-
tion with the outside world, the private, i.e. the internal IP
address is utilized for intra-network communications. The
instance is also assigned a unique virtualized Media Access
Control (MAC) address within the internal network to es-
tablish communications in the data link layer. Further the
instances are assigned an SSH port (either the port 22 or a
custom one) to give users access to their instances. Finally,
the hypervisor is also assigned an IP, called the first hop
IP, and is in charge of implementing filtering protocols with
intra-instance requests to prevent the generation of spoofed
traffic [1].

The above described network parameters (among others)
are usually referred to as logical channels that can be ex-
ploited to infer information about the placement of the in-
stance. Ideally these parameters should give no informa-
tion about the identities of the co-located neighbors. For
instance, the first hop IP address does not reveal location
information since traceroute requests are filtered by the
hypervisor. However, by combining more than one of these
logical channels we show that co-location can still be inferred
in Microsoft Azure and that we can also reveal the identity
of our co-located neighbors.

2.2 Memory Bus Locking
In this study, we use the memory bus locking technique for

two purposes: co-location verification and the performance
degradation. Former is to verify the co-location between
instances discovered via logical channels. And the latter
is to degrade the performance of the co-located neighbor
by frequently locking the memory bus and slowing down
memory accesses.



The memory bus lock is a cache coherency feature em-
ployed in CPUs. Whenever an atomic operation such as
XADDL or CMPXCHG is issued, the CPU locks the cache
line that holds the operated data. This locking mechanism
prevents Read After Write (RAW) hazards and maintains
cache coherency. On the other hand, when the operated
memory block spans multiple cache lines, the CPU cannot
lock the adjacent cache lines and instead issues a bus lock.
Nowadays however, CPUs have multiple memory channels
and the locking of a single memory channel is not sufficient
since other channels can be active. Also considering the
multi-socket systems with inter-CPU connections like Quick
Path Interconnect (QPI), the problem gets even more com-
plicated. To cope with this complex system, newer Intel
CPUs use pipeline flushing.

The pipeline flushing drops all the memory operations in
the pipeline hence ensuring that no instruction will operate
on the protected data. This however results in a significant
performance degradation to the system. The degradation
is even more apparent for applications that rely heavily on
the memory. In our test platforms, we measured memory
access times during the lock as high as 4000 clock cycles
as opposed to regular 250-300 cycles. As for degradation of
applications, we have observed varying levels of performance
degradation, as given in detail in Section 5.

3. CO-LOCATION DEDUCTION
VIA NETWORK PARAMETERS

Our goal is to find the easiest, cheapest and fastest method
to determine co-location in Microsoft Azure with high ac-
curacy, without having to take noise-prone measurements
(cache or memory) that can be detected easily by the hy-
pervisor. To this aim, we analyze the network parameters
assigned by Microsoft to our instances and deduce physical
co-location. To the best of our knowledge logical channels to
determine co-location have never been studied in Microsoft
Azure. We believe that, this study is crucial for an IaaS
cloud that has 16% of the cloud computing market share
and is the second most used IaaS cloud. In short, we aim to
discover whether Microsoft Azure provides any information
that will help us determine co-location just by looking at
logical channels, without having to take side-channel mea-
surements.

With the goal of co-location detection through logical chan-
nels in mind, we create 4 different accounts in Microsoft
Azure, that will be referred as A, B, C, D. In each of these
accounts, we launch 20 of the cheap, ExtraSmall instances
using the manage.windowsazure.com portal. For consecu-
tive experiments, we have used the Azure Command Line
Interface (CLI) to launch same type of instances in an auto-
mated fashion to save time. Our ExtraSmall instances had
the following specifications; 1 vCPU core, 0.75 GB of RAM,
low net bandwidth and 19 GBs of total disk size, running
an Ubuntu-14.04.02-LTS guest operating system, located in
East US2 region i.e. one of the largest Microsoft Azure re-
gions. Note that at the time of our instance launch, we have
used the default (old) management portal that was avail-
able to us. As explained later, Microsoft now offers a new,
improved portal that places each VM in a separate virtual
private network by default. Nevertheless, the old portal is
still available to users that choose to use it.

After instances launch, we record the network parameters

such as the internal and public IP addresses, SSH port num-
bers and MAC addresses of all instances. Note that we do
not record the hypervisor IP address since it is filtered by
the virtual switch in Microsoft Azure. In order to identify
the network parameters that might infer co-location, we first
verify co-location with the memory bus locking mechanism.
Since Microsoft Azure allows instances from the same ac-
count to be co-located, we obtain both inter-account and
intra-account co-locations.

3.1 Memory Bus Lock Verification Method
We use the memory bus locking method described in Sec-

tion 2 as a verification for our co-location assumptions based
on network parameters. We use the memory bus as a covert
channel to send messages between two instances. In particu-
lar, if an instances wants to send a 1 it will lock the memory
bus to increase the memory latency in the co-located in-
stance, whereas if it needs to send a 0 it will not trigger the
memory lock. If the one instance receives the message sent
by another instance correctly, then it is inferred that both
instances use the same physical system hence co-located. Af-
ter obtaining the base truth regarding co-locations with this
method, we start investigating various network parameters
in co-located instances.

Note that after a method to detect co-location through
network is developed, the bus locking mechanism will not be
needed for co-location detection. However, it will be used
for QoS degradation attack.

3.2 Network Information Examination
In the following, we examine the data related to the net-

work that we have collected during instance launches. We
use this data to test our hypothesis that network information
indeed reveals or at least hints at co-location.

3.2.1 Public IP Address
Instances created within the same Virtual Private Cloud

(VPC) are assigned the same public IP address by Microsoft
Azure, with a different SSH port to log in to individual ma-
chines. Since there can be up to 20 instances in a VPC,
inspecting the public IP address most likely would not give
any precise information about co-location. It is highly un-
likely that 20 instances co-locate on a single physical ma-
chine. However, the public IP address can still give some
partial information about co-location.

In order to test our hypothesis, we distribute 80 instances
with different IPs across 4 accounts. Then applying the
memory bus locking verification method, we check for co-
location. Results in Table 1 verify that the instances with
similar public IPs are not co-located and the public IP ad-
dress is not a co-location indicator. Indeed, if public IP ad-
dress proximity was related to co-location, 40.79.81.175,
40.79.42.204 and 40.79.43.56 would show a higher prob-
ability of being co-located with each other, since they share
first two octets. However, we observe the opposite behavior,
i.e. 40.79.42.204 is co-located with a completely different
public IP address (13.68.18.16), while 40.79.81.175 is co-
located with 40.84.59.3. Note that each of the public IPs
does not necessarily correspond to more than one VM in
the same account (Microsoft only allows a limited number
of IPs per account). Thus, Microsoft Azure seems to suc-
cessfully randomize the public IP address and it is not a
co-location detection metric. Also, within an account where
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Figure 1: Port distance distribution across co-
located instances: measured vs random.

all instances share the same public IP, we had co-located
and not co-located instances. Since these instances share
the same public IP, it does not affect our hypothesis.

3.2.2 SSH Port Number
Microsoft Azure assigns private SSH port numbers rang-

ing between 49152 and 65535 to instances within the same
VPC. We investigate whether the assigned port number has
any relation to the co-location. We consider port number
distances of 10, 100, 200, 500, 1000, 3000 and check if any
low distance hints co-location. Figure 1 shows the distribu-
tion of the assigned port number distances that we observed
among our co-located instances in comparison to a random
distribution. It can be observed that while the measured dis-
tribution is a bit lower, it still is not a valid indicator for co-
location. Furthermore, Table 2 shows the ratio of correctly
guessed co-located pairs when the instances are grouped ac-
cording to their SSH port number. For simplicity reasons, we
do not include the ratio of incorrectly guessed co-locations.
It is clear that the SSH port assignment is random and even
with the maximum distance considered (3000), 80% of the
co-located instances remain undetected.

3.2.3 Internal IP Address
We now analyze the relationship between co-location and

the auto-assigned internal IP addresses. First we examine
the correspondence among addresses with the same first 2
octets, i.e. within the same /16 subnet. Note that if this
test shows that the instances with different first 2 IP address
octets can be co-located within the same machines, it would
mean that the internal IP address proximity of instances has
no effect on co-location.

In our experiments, we observed 3 different /16 subnets for
80 instances in 4 accounts. Figure 2 shows the distribution
of our co-located machines in terms of the /16 internal IP
addresses. Respectively the x and y axes represent the three
different subnets and the co-located pair numbers. Each
member of a pair is represented with an x and an o.

In total we confirmed 120 pairs to be co-located using
the memory bus lock out of the 3200 potential co-located
pairs from our 80 instances. Furthermore, we observe that
none of the members of a co-located pair belong to different
subnets. Note that, if the instances were assigned internal IP

Microsoft Azure /16 Internal Subnet
100.73.0.0/16 100.116.0.0/16 100.114.0.0/16
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Figure 2: Internal /16 subnet IP address proximity
test. The x axis shows the different /16 addresses
where our instances are placed, the y axis indicates
the co-located pair number, and the markers repre-
sent each member of the pair.

addresses at random, we would have a higher probability of
observing co-location across different subnets than observing
co-location within the same subnet. Thus, we can infer from
this first observation that the internal IP addresses at least
have partial relation with the co-located instances. However,
if the co-located instances are placed within the same /16
subnet, this still yields a maximum of 216 possible targets.
In order to reduce this number, we proceed to analyze the
subnets that have identical first 3 octets i.e. same /24 subnet
of the Internal IP address.

Figure 3 shows the distribution of the 52 (out of 120) co-
located instance private IPs in the 100.73.0.0/16 address
range. As before, the x and y axes represent the differ-
ent subnets and the co-location pair numbers respectively.
For each y-value, members of the co-located pair are rep-
resented by an x and an o. We obtain similar results with
the previous test. Again, our co-located instances share the
same subnet of private IP addresses. Moreover, none of
our 118 co-located pairs have a different /24 subnet, further
supporting our hypothesis that the private IP addresses are
strongly correlated to co-location. With this information,
we can greatly reduce the number of candidates when we
are looking for co-located instances with a specific target.
Note that if the private IP addresses were assigned at ran-
dom, we would have observed -with high ratio- co-located
pairs with different subnets within the given range.

page

3.2.4 MAC Address
After observing that co-located instances are in the same

/24 subnet, we proceed to check whether the MAC addresses
are an indication of co-location as well. We first analyze the
diversity of the MAC assignment in terms of the network
device manufacturer code that is the first 6 hex-digits of
the MAC. We utilize the popular nmap tool to discover the
MAC addresses of the neighboring instances in the same
subnet. Note that this step can also be performed with
other tools like arpscan. We choose 3 different subnets at
random and calculate the distribution of first 3 octets i.e.
the Organizationally Unique Identifier.

Figure 4 shows the number of instances assigned to each
identifier in 3 different subnets. We observe 3 identifiers as-



Table 1: Public IP address and Co-location Relation
PubIP 40.84.59.3 13.68.29.129 40.84.50.99 13.68.18.16 40.79.43.56 40.79.81.175 40.79.42.204 13.68.20.10

40.84.59.3 * X X X X X X X
13.68.29.129 X * X X X X X X
40.84.50.99 X X * X X X X X
13.68.18.16 X X X * X X X X
40.79.43.56 X X X X * X X X
40.79.81.175 X X X X X * X X
40.79.42.204 X X X X X X * X
13.68.20.10 X X X X X X X *

Table 2: Success Rate of Co-location Guesses Based on Port Distance

Port Distance 10 100 200 500 1000 3000

Co-location Guess Success 0.8% 1.6% 1.6% 3.3% 7.6% 10.49%

Microsoft Azure 100.73/16 Internal Subnet divided in /24 subnets
94.0/24 108.0/24 92.0/24 82.0/24 76.0/24 114.0/24 116.0/24 98.0/24
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Figure 3: Internal /24 Subnet IP address proxim-
ity test for the 173.70/16 internal IP address. The x
axis shows the different /24 addresses where our in-
stances are placed, the y axis indicates the co-located
pair number, and the markers represent each mem-
ber of the pair.

signed to Microsoft, Acronet and some other organization in
each subnet. The fact that there are different MAC identi-
fiers within the same LAN leads us to believe that different
organizational identifiers belong to different types of net-
work devices and we can further reduce the co-location tar-
get radius. Note that, if the MAC address assignment was
performed at random, we would either observe many MAC
identifiers (not a normal distribution) or a unique one (and
MAC addresses assigned at random within that identifier).

Similarly to the approach followed in the previous exper-
iment, we try to identify our co-located instances by their
MAC proximity. However, we only consider instances that
are within the same subnet, i.e. we do not evaluate the
MAC proximity across instances in different subnets since
we already know that they are not co-located. We evaluate
this proximity in terms of number of identical MAC address
hex-digits. The experiment is carried out as follows: we fix
the first n hex-digits of the MAC address, and assume that
all the instances within that same subnet with identical first
n MAC digits are co-located. For each n, we calculate the
number of truly co-located instances that were incorrectly
guessed.

Table 3 shows the outcome of the experiment. Fixing the

100.73.94.0/24 100.114.178.0/24100.114.200.15
0
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30
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50
Unknown (7C:FE:90)
Acronet (00:04:FF)
Microsoft (00:0D:3A)
Microsoft (00:03:FF)
Unknown (E4:1D:2D)

Figure 4: Distribution of MAC identifiers in 3 dif-
ferent Microsoft Azure subnets.

first 6 digits yields a very high success rate and after 6, the
more digits considered the less accuracy we obtain in the
results. We observe that the 100% success rate is achieved
by fixing either the first 6 or 7 digits, i.e. the instances that
belong to a co-located pair have identical 6 or 7 digits and
are placed in the same subnet. Having said that, all our
instances that had identical first 6 digits also coincide in the
7th digit. Therefore we do not have enough entropy in our
MAC pool to determine whether the 7th digit would support
or refute the hypothesis. Also note that our experiments
did not have false positives, supporting the hypothesis that
if two instances have identical first 6 MAC hex-digits, then

Table 3: False negative ratio when various number of
identical MAC digits are used to guess co-location.

Identical MAC
Address Digits

Co-location Guess
False Negative Rate

6 0%
7 0%
8 15.25%
9 70.34%
10 97.46%
11 100%



they are co-located.
In conclusion, we observed that if and only if virtual ma-

chines are located in the same /24 subnet and have identical
MAC vendor are co-located. Our results further prove the
opposite direction of the statement, i.e., we did not observe
co-located pairs when any of those parameters are different.
Thus, one can directly identify the co-located VMs by ex-
cluding those that do not meet the subnet and MAC vendor
requirement. For the rest of the paper, this co-location veri-
fication method will be referred as the Network Co-location
Detection (NetCold) approach.

4. IMPLICATIONS AND ATTACK SCENAR-
IOS

We demonstrated in the previous sections that we can
determine whether two machines are co-located or not using
basic network parameters; the internal IP address and the
MAC address. The MAC address is specially interesting,
since we obtain a unique identifier inside the LAN of our
neighbors. This opens new features and attack scenarios
than can be carried out inside the Microsoft Azure cloud.

4.1 LAN Scanning and Target Identification
With the new NetCold mechanism we can obtain cer-

tain unique parameters of the Virtual Machines that are
co-located with our instances. In particular, we can per-
form a subnet scanning to detect which of our neighbors
within the subnet share the same first 6 MAC digits with
our instances. If the MAC addresses are identical in the
first 6 digits, we know that two instances are co-located. In
short, the attacker has to obtain the following information
about the co-located instances:

• MAC address: The attacker can obtain the unique
MAC address assigned to the co-located target instances
(identical MAC vendor ID) inside the subnet.

• Internal IP address: An attacker can also obtain the
unique Internal IP addresses that share MAC vendor
ID with his instance. Note that the internal IP address
does not necessarily give any information about the
public IP address.

• Open Ports: The attacker can also obtain the open
ports on any internal IP address inside his subnet.
Note that, a particular port filtered for the internal
IP address might still be open in the public IP.

Thus, we pick one of our instances in each of the /24 sub-
nets where they are allocated and perform the local subnet
scanning together with the NetCold mechanism to find the
number of our co-located neighbors. For all of our neighbors,
we recover the internal IP, the MAC address and whether
the port 80 or 443 are opened. We will use the port infor-
mation later on.

Along with the parameters obtained, we observe a unique
identification mechanism in Microsoft Azure. Indeed, given
a victim v with a particular MAC address m in a subnet s
and an attacker instance a, when a uses nping to establish
TCP connections with either the public or the internal IP
address to whom that MAC address belongs to, we observe
the following:

• If a, regardless of whether he is in the same subnet s or
not, does not specify the correct destination IP address
(either internal or public) or the correct destination
MAC address m, the victim v never responds and the
connection is not established.

• If a does not belong to the subnet s, even if he forges
the TCP packet with the correct destination IP ad-
dress (either internal or public) and the correct desti-
nation MAC address m, the TCP connection will never
be established. The external router drops the package
when the destination MAC field is determined, since
it only implements layer 3 communications.

• If a is in the same subnet s and he forges the package
with the correct destination IP address (internal or
public) and the correct destination MAC address m,
the connection is established and a response is given
back to a.

Thus, forging a TCP package in Microsoft Azure deter-
mining the destination MAC address and either the internal
or the public IP addresses allows us to determine whether
that particular target is in our subnet or not. In other words,
data link communications are not filtered by the hypervisor
switch if they are performed from within the same subnet.
The parameters obtained with our NetCold co-location de-
tection mechanism together with the identification mecha-
nism open two attack vectors that we will describe in the
following sections.

4.2 Achieving Faster and Cheaper Targeted
Co-location

Once we know who our neighbors are and what their MAC
addresses are using NetCold, we can use our TCP connection
approach to verify whether any of our co-located neighbors
is the target that we are looking for. We only try those
neighbor MAC addresses that share the same 6 MAC digits
with the attacker instance, since we observed that is a key
factor to be co-located. With this approach, if and only if
the target is co-located it will send a response back to the
TCP connection request.

In order to verify our approach, we set up public IP ad-
dresses to 5 of our instances at random, and open the port 80
on them. We will refer to these instances as the blue team.
The goal is, for the rest of the instances (we will call them the
red team) to find out where the members of the blue team
reside and whether they are co-located with them. For that
purpose, we set up a script that will first, for each instance,
find the neighbors using NetCold, and then, establish a TCP
connection with the targeted public IP addresses (assumed
to be known) including each of the co-located destination
MAC addresses and wait for a response. Clearly if any of
the targets are co-located with any of our instances, those
will receive a response from the blue team member they are
co-located with, whereas if they are not, no response will be
received. There is no collision problem if we run our targeted
co-location scripts in one of the red team members, since our
NetCold script excludes the IP address of the instance where
the script is running from. We utilize the popular nping tool
to establish the TCP connection, which allows specifying the
destination MAC address as part of the IP address packet.
Each member of the red team (in parallel) establishes 5 TCP
connections (to the members of the blue team) with a 5 ms



delay between them, and then waits 1 second to trigger a re-
sponse. Thus, our targeted co-location approach only needs
1 second for each neighbor MAC verification.

Figure 5 shows the number of neighbors found in each
of the subnets that have coincident MAC address with the
instance together with the number of instances that found
each of the public IP address assigned hosts. The number of
co-located neighbors are represented in red, whereas each of
the members of the blue team is represented with a different
color. As we can see, the number of neighbors (and thus, the
number of MAC addresses we have to try) varies from 6 to
32, averaging around 20. This limits the maximum number
of TCP connections we need to establish to 32. It can also be
observed that all the members of the blue team were found
to be co-located with at least one member of the red team.
Moreover, one of the blue team members is co-located with
two red team members. As for the rest, only one instance
was co-located with each of them and that is why they get
a single count.

In short, the experimental observations prove our hypothe-
ses and show the viability of our network based targeted co-
location detection method. Due to its simplicity, our method
has several advantages over previously proposed methods:

• The new targeted co-location method succeeds in the
range of seconds, i.e. it is the fastest targeted co-
location method proposed.

• The method does not have to cope with network timing
noise or micro-architectural sources of noise and gives
a clear accurate response.

• The method can easily be adjusted to introduce multi-
ple targets without substantially increasing the success
time. In fact, one can establish several TCP connec-
tions almost at the same time with the desired n tar-
gets.

• The proposed mechanism is hardly detectable by CSPs,
since it only uses a single TCP request/second.

4.3 Achieving Co-location with a Priori Un-
known Targets

Our co-location and identification methodology opens up
another interesting scenario. In fact, a malicious attacker
might not have an a priori list of targets, but he might want
to build it a posteriori. For instance, consider the scenario in
which a malicious attacker initiates various instances, mak-
ing sure that they are not co-located with each other with
the NetCold co-location detection method. The malicious
attacker does not have any target in mind before opening his
instances. Instead, the attacker might want to find out who
is he co-located with after he has opened a sufficient num-
ber of instances. Then, once he knows whom he is co-located
with, he can exploit his co-location if he finds his targets are
of interest to him. More interestingly, the attacker can rent
his co-located instances to the victim’s competitor that can
be highly interested in performing malicious activities such
as DoS attacks or side-channel attacks.

Indeed, our co-location method together with our identi-
fication mechanism allows an attacker to find the identity
of the instances he is co-located with a posteriori. The only
thing the attacker needs to know a priori is what kind of ser-
vice he wants to be co-located with. For simplicity reasons

lets assume that the attacker wants to be co-located with
web servers. There are two ways in which the attacker can
discover his neighbors:

The HTTP port in the internal IP address is open: If
the HTTP in the internal IP address is opened, the attacker
can identify co-located services within seconds. Indeed, he
can follow a simple two step approach:

• The attacker first uses the NetCold co-location detec-
tion method to find out what Internal IP addresses
from within the same subnet are co-located with him.

• The attacker can, for each of the co-located internal
IP addresses, request service to the HTTP port to see
if he gets a response. If the attacker is co-located with
a web server he directly gets the HTML file associated
with that web server.

The HTTP port in the internal IP address is closed:
In the case where the service cannot be retrieved through
the internal IP, an attacker has to take additional steps to
find valuable targets:

• First the attacker scans the entire public IP address
range assigned to Microsoft Azure for IP addresses
with the port 80 (or 443) opened, as it would be the
case for web servers. The attacker stores the public IP
addresses with the 80th port opened in list. The pub-
lic IP address range for Microsoft Azure is available
in [2].

• Once the list has been constructed, the attacker runs
NetCold to detect the number of possible co-located
targets and their respective MAC addresses.

• For each MAC address, the attacker runs the unique
identification method described above, i.e. he estab-
lishes a TCP connection with each of the IP addresses
in the list specifying the destination MAC address.

• Whenever the attacker is co-located with a public HTTP
server, the server will respond to the TCP request. If
the attacker is not co-located with any web server, then
the attacker will not receive any response.

We prove the viability of both methods by opening 4 new
instances that host a web server. Our goal is, without hav-
ing them as a target beforehand, to be able to determine
which of our original instances are co-located with these web
servers (if any). The experiments are carried out using both
of the above mentioned mechanisms, and will additionally
obtain any web server (not only the ones that belong to
us) that is co-located with our instances. The internal net-
work scanning mechanism can test all the possible targets in
a matter of seconds. As for the external network approach,
we use the masscan to find all the public IP addresses within
the Microsoft Azure range with their 80th port opened. This
scan resulted in around 7000 IP addresses. We again used
nping to establish the TCP connections. In order to im-
prove the speed of the approach, we established several TCP
connections with a very short delay without waiting for the
response. Alongside, we observed the incoming packets with
the popular tool tcpdump. Utilizing this approach we were
able to verify each MAC address against all the public IP
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Figure 5: Number of neighbors and number of targeted hosts found in each subnet

addresses in 3 minutes. Thus, the latency to check all the
MAC addresses within a subnet was at most 90 minutes.

Figure 6 shows the number of services found for each of
our /24 subnets. The x axis represent the subnet IP address,
while the y axis represents the number of services that were
found to be co-located. Servers found through the internal
network are shown in red while servers found in the exter-
nal network are shown in blue. In total, we found out the
identity of 14 servers with the 80th port open in the internal
network and 29 through the external network including 3 of
our web servers. We do not consider broken services or sam-
ple IIS services. Among discovered servers, there were web
pages, PaaS services, Apache web servers as well as some we
were not authorized to have access to. It can be observed
that the number of retrieved web servers is higher in the case
of the public IP address scan than the internal network scan.
However, our results still show that around 50% of the web
servers do not properly filter their internal network ports
since they are retrievable through the internal network.

Table 4 represents the distribution of discovered co-located
servers based on their service. During our experiments, we
were co-located with 3 out of 4 of our test web pages. The
undiscovered web page was residing in an instance that we
had no co-location with. As for the rest of the co-located
web pages, the majority belonged to companies hosting their
web pages on Azure. In addition to these web pages that
we could access to, we also discovered 6 web pages which we
could not access to due to lack of authorization. Note that
we could still discover identities of server owners by simply
looking at the issued certificate. However, due to Server
Name Indication (SNI) it is likely that we did not detect all
of the web pages that may be hosted on a single instance.
We also discovered web pages of financial institutions, stores
and software developers. Lastly, we discovered a PaaS cloud
service running on Azure infrastructure.

The co-location identification mechanism proposed here
presents the same advantages as the targeted co-location
method. First, it can detect whether any existing web server
is co-located in the range of seconds through the internal

Table 4: Distribution of the found active co-located
services.
Own web Web Apache web PaaS Unauthorized
pages pages servers services access
3 17 2 1 6

network and in at most 90 minutes in the case of the ex-
ternal network. These are the fastest (and probably the
only viable) mechanism to determine co-location in the wild.
Furthermore, the verification mechanism is again hardly de-
tectable, since it only consists of one TCP connection with
each host every 3 minutes.

5. QOS DEGRADATION RESULTS
There are several malevolent activities that malicious ten-

ants can execute if they co-reside in the same server as
their victim, e.g. side-channel attacks or QoS attacks. In
this section we implement a QoS attack launched by one or
many collaborative co-located instances to degrade the per-
formance of the target victim. The QoS attack is based on
provoking an unfair utilization of the memory bandwidth
by continuously issuing memory locks from co-located in-
stances. In order to perform realistic experiments, we uti-
lize our set of co-located instances in Microsoft Azure. In
particular we utilize the maximum number of co-located in-
stances that we were able to obtain among our 4 accounts,
i.e. 6 co-located instances in a single physical server. One
of instances acted as a victim while the others were used to
perform memory locks. Note that we performed these ex-
periments for short periods of time and after midnight with
the goal of minimizing the performance degradation of the
co-located instances not controlled by us.

Table 5 shows the performance degradation due to the
memory channel for variety of applications. For the test, we
used the phoronix-test-suite that can perform numerous
benchmarks. We used a set of 6 co-located instances, one
running the tests while the other 5 were reserved to exe-
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Figure 6: Number of active web services co-located with our instances. Broken or sample web services are
not considered.

cute memory bus locking. From the 5 instances reserved
to execute memory bus locking, we triggered the bus lock-
ing mechanism from varying number of instances simultane-
ously. By doing so, we were able to observe the affects of
varying number of instances issuing bus locking in parallel
on a single physical system. Note that since the hypervisor
schedules instances on the CPU and presents an overhead
of its own, this was crucial to show the advantage of hav-
ing higher number of co-located instances with a target for
maximum impact.

Due to the popularity of the Apache web server, the first
application on our benchmark list was the Apache web
server. The test sets up a web server and determines how
many requests can the system handle in a second. Without
any locks active, the web server was able to handle 2,760
requests per second. However, after running just 1 lock on
a co-located instance, the web server performance was down
to 2,039 requests per second and the degradation consis-
tently increased when more locks were issued simultaneously.
When 5 locks were active, the web server could only handle
479 requests, slowing down by a factor of 5.7. The second
test we ran was the Media Streaming, aiming to deter-
mine how much of streaming would the attack result in. As
expected, the memory heavy streaming test showed signifi-
cant degradations with active memory bus locks. With no
locks, the system could handle 4,444 MB/s of media stream-
ing while with 5 locks this was down to 1,198 MB/s. The
Blogbench test designed to simulate a busy file server with
multiple read/write support. While unlocked, the system
could handle 114727 reads and writes (of 64 Kb) per sec-
ond. When even only 1 lock was issued, the system per-
formance was down to 78566 reads and writes. And when
all 5 locks were used, only 38,919 operations could be per-
formed in a second, again showing significant performance
degradation. Our next test, Ebizzy is designed to gener-
ate a highly threaded web application workload resembling
a real web server. Without any locks the system was able to
handle 3,384 records per second. And when all 5 locks were

employed this was down to mere 720 records per second.
Our final test, Redis is a data structure store being used as
a database in a server-client model. With no locks present,
210,095 requests were handled per second and with 5 active
locks, this was down to 48,792, again showing significant
reduction in performance.

In conclusion, we show that variety of commonly used
applications are affected by the memory bus locking. In
addition to that, the performance degradation is directly
related to the number of active locks running on the sys-
tem. Therefore, in a malicious co-location scenario, more
co-located instances the attacker has with the victim trans-
lates into stronger attack.

6. COUNTERMEASURES
This work exploits logical network channels to derive co-

location with high value targets and then exploits the mem-
ory bus to slow down the victim’s performance. In order to
prevent these two exploits, CSPs should:

• Randomize the MAC addresses assigned to the co-
located instances in the same subnet. This at least
would increase the entropy and the attacker will not
know exactly who is he co-located with.

• The subnet placement was one of the parameters used
in this paper to derive co-location. CSPs should ran-
domize the internal IP addresses and increase the IP
range to avoid direct malicious co-location identifica-
tion.

• Placing each VM instance in a separate virtual pri-
vate network by default would deprive the attacker of
network scanning and mitigate this attack.

• Periodic live migration of instances would reduce the
time an attacker is co-located with a specific target,
forcing the attacker to achieve co-location over and
over again.



Table 5: Performance Degradation due to Memory Bus Locking
Active Apache Media Streaming BlogBench Ebizzy Redis Average
Locks Requests/s MB/s Read-Write/s Records/s Requests/s Degradation

0 2,760 - 100% 4,444 - 100% 114,727 - 100% 3,384 - 100% 210,095 - 100% 0%
1 2,039 - 73% 4,093 - 92% 78,566 - 68% 2,332 - 68% 146,583 - 69% 26%
2 1,300 - 47% 3,268 - 73% 73,991 - 64% 1,486 - 43% 96,724 - 46% 46%
3 800 - 28% 2,333 - 52% 57,262 - 49% 1,115 - 32% 71,734 - 34% 61%
4 675 - 24% 1,833 - 41% 42,186 - 36% 849 - 25% 61,194 - 29% 69%
5 479 - 17% 1,198 - 26% 38,919 - 33% 720 - 21% 48,792 - 23% 76%

• The memory bus locking was utilized to degrade the
performance of the co-located victims. We believe
cloud providers should implement a memory bus check-
ing mechanism to monitor the locking activity. We
believe that such an abnormal behavior continuously
being executed should be easily detectable.

7. RELATED WORK
Cloud co-location was not considered until 2009, when

Ristenpart et al. [18] showed that co-location with a target
on a commercial cloud like Amazon EC2 is within attackers’
reach. In order to achieve co-location they utilized several
facts like ping timing delay between instances, traceroute to
identify the first hop in the network or IP address proximity.
Note that, the traceroute approach is now filtered by most
of the firewalls (as in Azure and EC2) and the ping delay
is not a reliable metric anymore. In comparison, their IP
address proximity approach was not a definitive metric for
co-location, does not reveal the identity and was fixed in
EC2, while we combine it with the MAC address knowledge
to make it a definitive co-location identifier and a target
identifier.

Researchers have also utilized hardware covert channels
to derive co-location in virtualized environments. In 2011
Zhang et al. [26] proposed a defensive co-location detection
based on the L2 cache aiming at identifying when a partic-
ular user is in exclusive use of a physical machine. The L2
co-location mechanism is not applicable to detect co-location
across core in modern processors, since it is a core private
resource. Furthermore, the authors propose a pure defensive
approach, i.e. they do not perform any target identification
step. In 2015, two new co-location methods where proposed
to detect both collaborative and targeted co-location using a
memory bus locking mechanism in Amazon EC2, Microsoft
Azure and Google Cloud [21, 24]. Later in 2015, Inci et
al. [10] presented a targeted co-location method based on
Last Level Cache (LLC) contention. All these hardware
resource based co-location methods are costly, noisy, de-
tectable if the covert channel is monitored and they need
access to the targets service. In contrast our approach is
much faster (and thus cheaper), does not suffer from noise,
stealthier, easily scalable and only establishes a single TCP
connection with the target.

More research has been performed on finding covert chan-
nels without co-location purposes in virtualized environments.
Most of the works focus on shared resources within the
same physical server, such as the cache [23] or the mem-
ory bus [22]. Others measured the number of hops between
co-located instances [8]. One of the main security issues that
malicious co-location implies is the execution of side-channel
attacks. Particularly powerful is the LLC, a resource that

people have used to obtain cryptographic keys, keyboard
strokes, TLS messages or e-commerce application private
information across co-located instances [12, 14, 28, 15, 25,
11, 13, 4, 7, 16, 17]. Recently, Allan et al. [3] further showed
that these attacks can be amplified through performance
degradation. Lower level caches have also been utilized to
obtain private information, but these are only applicable if
the instances are co-residing in the same core [27].

As for DoS attacks, Shea et al. [19] studied a number of
QoS attacks that could damage the performance of virtual-
ized environments. Shortly later, Darwish et al. [5] studied a
number of DoS attacks that can be performed in IaaS clouds
(IP address spoofing, SYN flooding, etc) and later proposed
defensive mechanisms to prevent them.

8. CONCLUSION
In conclusion, this paper presents a fast, cheap and stealthy

co-location detection mechanism that works in both collab-
orative and non-collaborative scenarios. In fact, we use the
more costly memory bus locking in the collaborative sce-
nario to develop NetCold, a pure logical channel based co-
location method that is cheap, fast and works great in a
non-collaborative scenario. NetCold utilizes logical chan-
nels that were commonly believed to be closed by CSPs. It
also shows how the co-located instances can be identified
by simple TCP packet forgery. Once the targets have been
identified, the Quality of Service can be degraded by utiliz-
ing a memory locking mechanism.

This co-location detection technique and the QoS attack
can be used by a malicious party to offer QoS degradation as
a service to competitors of identified targets. In our experi-
ments, we have found instances with live, high value targets
that are co-located with our instances. We believe cloud
providers should perform a better randomization of their
network layout to avoid the co-location technique exploited
in this work. They should further check the memory bus so
that the QoS attacks exploited in this work can be detected
by the hypervisor.

9. ETHICAL CONCERNS
Our experiments in public IaaS clouds were designed to

conform with Azure’s acceptable use policy, the law, and
proper ethic. In this work, we took all necessary precau-
tions to make sure that we did not interfere with Azure’s
services in any way. The IP address and MAC collections
were lightweight network operations that did not stress the
underlying network infrastructure. Also, we have used the
LLC cache noise as an indicator of the physical system load
and used this knowledge to determine off peak hours. The
QoS degradation experiments were run during these off-peak



hours (mostly after midnight) in order to minimize interfer-
ence with other customers. In addition to that, the bus
locking was employed for very short time intervals during
the data collection.

10. INTERACTIONS WITH MICROSOFT
We have informed the Microsoft Azure about our findings

well in advance to this publication. The Microsoft Azure
team pointed out that with the new Azure management
portal, VM instances are put in virtual private networks by
default. This mitigates some of the network scans that can
be used for reconnaissance and provides a stronger network
isolation. Due to backwards compatibility concerns, the old
portal is still available to customers that choose to use it.

In all experiments controlled by us, NetCold had a 100%
success rate. To demonstrate the feasibility, we performed
a single uncontrolled NetCold experiment with a single ma-
chine. Microsoft informed us thirteen days later that this
experiment has failed, thus giving a first and singular false
positive. In addition, Microsoft has informed us that they
performed NetCold on a VM that was not co-located with
any other VMs. A local subnet scan and identified several
other VMs sharing the same subnet and the same leading
6 digits of MAC addressing, of which (obviously) none was
co-located. We have no knowledge whether they have taken
or are planning to take any steps to prevent the behavior
reported in this work. We recognize that they are in full
control of their network topology and can choose to close
the logic channel used in NetCold at any time. The covert
memory bus locking channel which we used to control the
experiments is, however, much harder to close.
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